Do some math on VTU file

I have a VTU file like this, (too big to upload, so I copy part of it). What I used to do is use MATLAB/Python to read the value of certain DataArray, but this time, the file is encoded, what is the best way to decode it, and then use MATLAB or Python script, or how to do some math directly in Paraview, like is there a good tutorial?

<VTKFile type='UnstructuredGrid' version='0.1' byte_order='LittleEndian' compressor='vtkZLibDataCompressor'>
	<UnstructuredGrid>
		<Piece NumberOfPoints='233202' NumberOfCells='77734'>
				<PointData Vectors='displacement force velocity ' Scalars='boundary condition ID fluid pressure '>
		<DataArray Name='displacement'  type='Float64' NumberOfComponents='3' format='appended' offset='0'></DataArray>
		<DataArray Name='force'  type='Float64' NumberOfComponents='3' format='appended' offset='3985032'></DataArray>
		<DataArray Name='velocity'  type='Float64' NumberOfComponents='3' format='appended' offset='8977484'></DataArray>
		<DataArray Name='boundary condition ID'  type='Int32' NumberOfComponents='1' format='appended' offset='13996524'></DataArray>
		<DataArray Name='fluid pressure'  type='Float64' NumberOfComponents='1' format='appended' offset='13998032'></DataArray>
	</PointData>
				<CellData Tensors='principal deviatoric stresses principal strains principal stresses strains stresses ' Scalars='alive mass material property ID mean stress volumetric strain '>
		<DataArray Name='principal deviatoric stresses'  type='Float64' NumberOfComponents='9' format='appended' offset='14000496'></DataArray>
		<DataArray Name='principal strains'  type='Float64' NumberOfComponents='9' format='appended' offset='15262288'></DataArray>
		<DataArray Name='principal stresses'  type='Float64' NumberOfComponents='9' format='appended' offset='17071920'></DataArray>
		<DataArray Name='strains'  type='Float64' NumberOfComponents='9' format='appended' offset='18896468'></DataArray>
		<DataArray Name='stresses'  type='Float64' NumberOfComponents='9' format='appended' offset='21325604'></DataArray>
		<DataArray Name='alive'  type='Int32' NumberOfComponents='1' format='appended' offset='24122624'></DataArray>
		<DataArray Name='mass'  type='Float64' NumberOfComponents='1' format='appended' offset='24123084'></DataArray>
		<DataArray Name='material property ID'  type='Int32' NumberOfComponents='1' format='appended' offset='24903008'></DataArray>
		<DataArray Name='mean stress'  type='Float64' NumberOfComponents='1' format='appended' offset='24903464'></DataArray>
		<DataArray Name='volumetric strain'  type='Float64' NumberOfComponents='1' format='appended' offset='25703828'></DataArray>
	</CellData>
				<Points>
		<DataArray  type='Float64' NumberOfComponents='3' format='appended' offset='26502476'></DataArray>
	</Points>
				<Cells>
		<DataArray Name='connectivity'  type='Int32' NumberOfComponents='1' format='appended' offset='31321668'></DataArray>
		<DataArray Name='offsets'  type='Int32' NumberOfComponents='1' format='appended' offset='31751792'></DataArray>
		<DataArray Name='types'  type='UInt8' NumberOfComponents='1' format='appended' offset='31896096'></DataArray>
	</Cells>
		</Piece>
	</UnstructuredGrid>
<AppendedData encoding='base64'>
_AQAAALBmVQCwZlUA05otAA==eNqsnWk0VW/Y8HehVJIQQhxDJRGhEtIOiZIkU6JOJVMplQYR21CkkkolpJNUIiVNVDjNoiIRSjokZMpUhsRzX+f/rqfLx3etp2/7t662fe59D9e8Kap+ZWBIvTFFsYwu7X2SR/3vP7fvEp3fCOeZtXDyEW9NfyzGI9zmBCchG/HAM9f05RZT1KcDUhJ1/zizpl3cC/jjeU5aXxHPDo2XA64hw8nloftQ3LciauT+VEzHNxbm1LGFisCZ9cJSmDPT1RX4fJPlFHT/UBu6ekw+xRwMGSiclv9PvF3t4RTgzg0TbiLOWD8dsx34qY8HQ7B8U9cYo6nkOfctrC//i+7/UrhxKvAJx0NrEafOhw7KAE/++FBzCMlfF3dMmULu79NwbN5EdP9zoayrhFPH763yQZyp9GXOAjdKe26H5VWvcPoLyH2ZUysnXTD+x/de0ZxZSjjvWqzFNcQNJjz1KiGcmz86JuUf51YUJyqrLKbop6s+r5dc/L+cVb3wyjgVeF/laUKIs0dZx8sC76q9PRlxTpCmlLMeeb53q0V3t/+7P3vOZP8VwD3FXSS//+MlG980yAG//2dldCt6TuNMoXuN5DlzHMfrKvy7P5UpdOEocOvgnjWYJ9lLVBLOZC7XMkecFpdTiJAh41zpGnhC+h9nfMsTGMK5lpfULmL+c6zFIZDvV3+Wgjgv0UzKHH7vo5OR53r+vUfWrMBuN+DC6sV3u9H7rRkYWAi8pe7e9W48PyPXuzvCdd+EoY3o91J6wm+WAxfbf94O88qrcbZ8bnRnHeJb9zLnBchznu944Cv4bz7QVoz6XXJNr6x1chNCnNXVs4twJl3uaReSJ/ddtdIG7steYWWK/27J/ZhVfP7BxARz7vZSM/76Wheqj3jFBOkXsH7N/TvXjUHzNrUoqQ64+IGauZh7/vlRAnxdjaws4tQYe/9louRac7jRSQy9X/8ZQuaEM+6vmq0RZ0RNxFUI57pvnjhCXlKsW+VXHsWWjqjcykL33yJeNUzeH1s22/QA5grTG34Szku5+HYv4myVJtEh1mKqY9Ofwr4F/+7P5cxb/llpMZV5Or21FvM9OYHXCPcVGM2ar4+ex/qFq20mvEc3yU1eaD6I9KeseQDXZ7uEMPdcWZd1G65TAtScEU+7PqFYjIyD1MpDZpPQOGSM2SMwmfCrlhOCEae/lnZ2gLzjwtSFWD6y4ag5kedyv4TclkDP35GVqE44fXFL/SnEmb+y8TPg/szx0vuIU/0Oh7oFyPUxT3GFJjQfBNJOZo8iXDRl5/VviJ+7/CJdkPAoyucmkme/STBeQ8aN+i2rO7713++lW5sf2AOP0Xj+suUf5+586aEH3Fyy814zWo9fcnqDtMjvml/8eAjtS8zemhXzCGcKrc79xPxpd5gN8KdMz7wp6HcNfS30VSb3yZa1fSOF5Df1TUginJZ2VnyBOP1MITqKcKrYUCIRcYq7JrciDPZb9bXvQvE+UP5XiH/tG+0UgjgjHV0cBft55IfHR/5xmwcyD3MXk/vH2WZmCf67v2+4BDWVJvyXo+yr4X/jKXYxLkcV5P8c9LtFoeffwJWZpb6YYl64XPYZ/2+esyLL/RnCKZXhNWcRp9eUPV8F8gbpFXHj/nEu++HkjVPh3LSuezMNzR/zL0JngBsuidXE+3BT8+O3hHMTL9tXInnqnM/L/E6y7s4fXhorjdYjXa1v25FHcWySWhIx37Xh5Tbgumru6xDnfClqC4X5UPk7PRids2xvf6kQ4P2X2E/QuczJ0DT3An5n+o3jSJ4aI3GxbDzh+01EFLA+IHwwy4tw7vNurhLmNlXWz4ErO3AWIs55rxDTLUuu33BPezf/ey+cNSrrhoGnShzyRZxaS2X0Ay8Vr47D3Hb/rAWwjnIMVT4qoXGbljFhMuG8WRNmpSPOfFnweQfI37587R2WVzszENlOfmeaScrKIXT/FRkn3LoIr03aeHA0kheeovqdjDO1J/lYP5o/FF2f4PQS/v9C06Kn6D7ax7cYFoN++EO3uQDxktX594Az5Xker/9xpndgj+Fo8nuVrR3tZ6L3W3hFVIeca9y//UlzEGfaHOqHiDzvfPXMLVj+zdxt9+TJ+C8/o3BIEs1bIflPuYTTNXr3QhFndsenVhBOzWxRxZzSth4n+sKYYg9wH3nIIK6//rER4YzNyhtWmFfGZXdzjck+dP2VO+LMu6x5/WR/ZCdNPi47A62LFtXi62Tfoa8V+M+dgfclm/JVhPOUUmfsQJyKrmufMymfEnM5pBSsjbiebrE74b7sPt2TmD/WGhNMODu98EEk5iHWvS1kv6AP7Ix/q4x4uBr3AuFcebvEu5jPWmIH8oznhptZmGuraXveJu+vY+aE8Y1ovWQKJJ3KJOOzN9cuB+n5lHbWXyGQZ+mtaPqG+CG9NY9/E776+ScfeXT/oK6ter3kPhNv2W/AfJR4aC7ITzhrGYs4M2WzyS1x8vxli/cb4/E/5eCQTDh1VuHEDMS5m1x/XQb5x2PZKli+QHjyZNA3/J0uZ+PzrnTKJznCaQPX4TrMAyfeUgfevm3uc3wOMpUdmr7wO1k/hQ5ifYm3qnEL8LsvruxGnKEafu0CXtBwgEHroqLjSZYweY9mYyo/TkbzzWTNgkjCWc4L83mYZ1CJuwmnjVsL32NeOXFZMIxbioDMJKRvU/tvbDMaINcFq5WMGxFX87Yo+kWu79dP49Tj51+fvcEX1u+PM+d34vNL7EHDAeDOfn8CMd9ufX4/4dzFx7v8Ee8+diUU3l/rSqVLP5CefC3IaDNwI0U/gybEnTYtXwRcYV3LDSRPjQ7waAF7KsBt4qmx6PeK50n3AC8R1PDH3Kye/kI4M7l933nM57zN1SL6EFeYK7pCCs2HfG9DCcLp9K7L9ohTMjxzA+Am3hLOiNNft/76K07OuyVTg9uR/kCfW/e5nnDu1YTF3xHnvmDse0Be7qJeB9Y3KNs3lWvgd9ZEvnUYYS+EXtsI+oDalDVumOuoTnaF60hfhY14PXYedPxMrmXi6mL/oPfY5CeoW0N4Fut0IN7/qSA1ebC3S6+tykf7PDfbtaAF7B8r+cr5Emh83AaduoBfb9iVijh3vl2hrgzhgnsOHUCcurh1nT/oAYXZOk1YP/TyZO0CbnFpHRdxpjHdjgHOXbd69A8kv/q2UCz8XfPmok5sRytxFuYBd/hq9xtz2YPy14AnfWnRx/rA5t4f3BlkvTgFzepF65d9/XVpLvCCXX9q8bq+MCj9kHBu8oG3XXgfcH06LEoR+a3lv67PQOPTuTexinC2e//7h4hT0Q8HF1Bw3j3a9wVx33Lu76J5+RTnU8k0fYt/3KZzj817wjMNc0LmIs5r8RgC+VRq/d/5iAtv7dCZYULmc9i3z7TOP16ypOBkGOHauh/j7879xz2/dSf2LSHyS49P3Ic4xf5qGlFHxr3n7qNteBxCXxX01xL+SOvUcXHEI/8YXyCc0cl8qIDH58CXmxvJfKLpxZHLFND4zH/gfA54jpr1XszvKs08TDiT5TR/HeLU7ITN7bCPieXtccB6tU/qls+EMxptDZ6YL/G4LgjnyN8pBS6Y618ILaom91GP6ZlXhdaLi1T+MPwu8fkPOmuw/+rtnWcwDq9tDNWxP8o6kXpOzo+SI1EXjPTQ/K9V9T5H9FsbEeOCtYhTEYFVH4g8K2TmsZ2Is3cPZS9QI9yUt7ZTFfkZdgjK6xBOnYp/VYA4x9RNQhHkXxQ51yDO/PjQJ0rGjRM0v9ZOBeuH768FgD2wcJn7bswHDYLiyfpnTzvWSGP+wuREP7HjeIlZi+PQuc8Yby1cC/pDe1dpFNYH8h0u2RHOtl586gLi3Cfv4+LgfD05Q3vbALLXNpR/9Qfeqi+7AXGWkbJSCPDH74+/6kfjbLuTqgQ9VmPg98Ux6O9W2yTagZ5qTQsHjUXczK9wNHCBNPE3WP7skY36f4i9wEor1pyK3otljutG8vfYO14H1WK9jjVj0iwiz6sUrKjDesIBr8rq6WR+xou8/jwK+cfWhB0uJJzaWxCYgTidw5z+ApwVPz8ZcWp78ZFtImR/6M46GoLHc0qA7E7CWTZ7noXj8XdkuE6Ec061d5/A8tTbJVt2k/EqWX9E8TA+F5YXDYEfgWNRRo04l91LqW1wfeCeW/AIP+r6bbNhn83+1KExwo966O4s4LxCE/UR3NCJ73ct2aiM/LHMVYvCsRPIPrmOdVFlAhq3VQW+4nB97PkDe8wNPthfJ3YmV+vlKEfEaQOtK6vJOcK9ecpCTRbJuxeZGhDOTDix7gd6j1wFzdM0yJteE27G73efq6DPrzyK5iV4CmuicTvVcWQ0ee9cgft+EpinXxTa1Ad2pYdpmcY/rqZx334T2SdZy3L7fqj8u7/+dY9RyYQzH/6Gc5X/ce0WMeX5hLPHpuwKQ5zZISeuIgf24KSGQ9jvVHzHTZ1w1mbV1EAWtiuXV2iC/NcVE0OxPJVUVOcP4290oCpghJ/wRNUhuN5poB2J+exlV/n6pcd5jVDEFYttl4Edvl/wcmUleo+zRq8z5nPuycXliHd/mCAJ/E3MvScVaD6kqBlatORRjPjdjfba+BxJeja/gfBjh1JXYz4UMWBO7Af23mNVGpifMbMvBb8Gr02oBT0PteHL89nArX6NzsD7tpTesgZYV8+n7r1ahvaZ1N8CfuD/DD+YVIX9oqzdwcNgV+o96zfH/s/jGo9UCKe6bRTvCiC+OXpyCLHrmfL48+dHIz5u7LX748A+GmXROwrxL7tvXgV58UT1S1ieWO5dPbkUFWNtWT5i3XGfL1MF/3yTjAIzYn1ZaoiCvyht0eZ9SG9p/5DxRok8/4Xe58emovNirbtKK/DR7z8xiDMJsYs+Es4oTde3xbwn+I4s+ClWC050QeuO23z9SL08uRZMq/mK/D/cANPNMkSeEU4++nI8/l3zdh7YB/r/rOBDHDzffgzu9oPrVj8qCXPVF4l8e6F/XxOKO9BrFGzmwPP8MVo9Ge8Pexz+9MPzaEQ1WePnXO4tIwDP88nAIhc/z7o5nu/IPGGpZlhE4n3ylc/umULk/DILUjmL99WDu89Xg527snFfPJav0bjwFP7uqZC/+7HeO+r6+xrCmQfmMZmY08+nPgR5m8Tk+1jvXRtb9LOTvL84yXsDsuj+5tff/gUeoTfAw/y654wJXbCOOkxrMKd4YWmL8wJXVF3O618zYt92HmsE+/yX6ZZrMWeZRC+E+TPu3X0kz10hXP0A9KG51b+uKKLnFLySWkc4d6OF9G3MH9stKwH5VpGxkYjTNu4Lb8G+bMpkS/Uhv9am70viga/+vaOsF73fJ2ppCcC1iqynI3nKLV8s7z15vr1jTbeVoueXXKcbANeRb8TnfUA8mT1/+kdyHZR4VRPtP9yQWu9zkuQ9xmaciEF2GfdDOFuY2Fd0XFatBeYl9xIDwA8j6P9OTmrEOhVOa1vE38LDmhdhntXbz7/mVveO4DHXf/Cv/d40/uPM8sCbCyaReTJ/jmAT1pMfpi1bSjj9gb2mG3OzFI4hyFuvu9yHOOvmr0XJauR3nVulZjIT6YED651OEs5xTxMtRf4iTvzDyL9q4O9SWSGJ5Kn3AS/jyHxjebCqqvH5+HXeSkXwu+qU9RViPir0ZiLwndoHcxGnb22yMiTzkrlY/JVCz8lYjYrVgfka+mKtNubtvdeECefeihHpm4z0osP+RqnkvOZorNz6QwndP94mYSPhvIQGlULEuTpvhjYQzioVthpSGvG+nkv+F/+dsksL7zOMxpspcE0vilPBnLKZKm/Mj1/VzULzVmX6q2IyjlxK3WHFdKyHpwUvIOPItj1Z44c4s22+4B8iz8sttM5HnG27f2kSvA8VZbk4fJ+f1UpFhHPmPO23Qpz2iW0dIJzeG2+I70Nlbf2s3Evm9/hGq348P0N3zNpOOFfJc/AK5s+6HlcRvYUnz6S3Y95bX8UBfcly/PZmfN4pfw6MATs9+UDcF8z3dXL3A7/PtvyBOfd7cMNl2Ld9NJ+E4/H03rQ0Aa5XWrtjfxcj1TE5GeRlmtxGyKN/Xx9T/z//Oj7/k2fSlV44q5P18nW0pBiaV5wFL1NXE84t/DFxMuLsGbqUNeHUitumcohTpZYxe5rJfnujYfN07G98fqY8F/hbr2QxzNPapt6GONPg+uQpmDvPGtKpJfKiG1xG43W9POXzE7AbjeIHs/Hfld/ZdLGOyC+eppuH45WyQqfugL1W981ZBMWdqUptp4Xgl9kyc5jGfJPUPjaRZ1SYM2GYp7xU3gR27o0IVbPfaPx7lD18vpJrqShRdj/iqrZFkp/Jdars2qIexOsVUvyJPcWJUf+2Gsdfch7JniCcXXV97ybM9S7npBHO2555YBni7Azp6efAXt3859sTFOflBHa6pQEXemY+CvvlVNc+jwf+Iim1EseFQxuqdMGP5xc+TlAY7RvTRq00BV6sZUohznXznWkC3KnB6Se+//nYzW6Qd5GcbnhKBPFwLUE/4FFu3nGIM19rjngC/zp09RHmknGlZeBvDTPocUWcS/+QaoE46axqky1Y3uJYbQXwD6GSbMyvjFobA++vnt0gT6HnqWhyPQe8MyJjFeLM7w6an5cwPavfHvONfemtcF7HLhSIwfkn3EPKH4E/ELU7h/NVlqZ+/AHcIP/NDixvJ+/qOkjmwaUonxP4XAhcMaz1x5hirVbPuoZ5j8zOAcI5EsFej/F5UR7vJgX7dVNxzpWXaL8tfrymHuyZOL1fru/+cV55xSI5kBe5p7675B9nLTogmahK1vUcu1kTkb3ArfD2KSCcDqtNfqSF/GN5Vj6y04k9tXvOn3HYvthcJTsE/v+WKUdWovnJTU6NUQe/leOdDmvE6WdrvmsRzpwJHZ6J+bZPgQdBn7keyGtGfipa7LRMCOHM6i6BHsS5a88vDAL56p6Gr9ivlanyZaCC/M7MBqshnGfFq2lVLoX9M6Lp/SPs13W8FP4e/OrNCyUQ52o1bPwJ+/WYiwtjhxF/zFONgfyQM3sPvxpEfM7RLccgD2RPTUUhjnvaHZrsWUP2Jclzv64he4FyigucA3la7oaW0ZjfFQnSI5y5oloSge2Lqo8J++H33rikGvkH+XmWprYHA/+94rI34szFMtt9wN9VPwn/g/VYl32ifD+4lbikOz5H6o2vbubHzWlXHE+hqttmuwCXN9bfhnimwVr1p4SrrShoK0ecvUBEI5dw3xL/L2i+UWIlm+y4hKcKhaiWonkbdutOrBGZbxNj/SzN0O9dLDR1unE+FZM/SvYt4rRl1Xia8EiDFetbTdG4SZsNvBYm11LnilNFRsTdZhcB595KPoe5e53Ve+A792zfijn1YlCIb0+GKfWG4fN366bp/LhLaVA8g/mT1i/8eFPP0w37kb/98jbBaxDX0B6z7Dm2O7TlDH+KEi5/xm0Q87bko4ZEnvmrWHME80gF7c0QTzXWOuHfgtb16yWnlIDb8grkEOfIj0r/yJdXmkzheHeHmu0LfnzCduwtbC9YrFHYDvvSU83Hgsi+oJYO/J4D56PdiZiFA/i96yepQV4Nc0Dp4X3EOVsCPvDzF1ln1uXjOLXcYV2Qp3U3/bo/wm4NGrYGeQt202rM77Zto4HzLFRG5E1RW2fz87i0BW9ajzhP3Z6WE/2tNTL4EQvHDV9u+E3sGd7YaweeYE6vmvqJ2DusRu8dNzBnK+0rAX0sxmzqs2q8zxsHCgCvjVG5/Rmvo3bFKLDDXZ4FjPmI+IEWTgL4SVxad/lMR/vS8Hz5bMK50SdZDzH/a7BRDOSl7BMvIs4o7lFeAeej/dEtxYrID+xoUx4JfGWe1hPEmV+BT20I5y6SsEzF8qLPDi8j84GWm+V/BXOdxvfBwLVEHhTh+wiLb90P80fxaEUK4jHq5bduahP9pCdX8d0s9JxCCclhhPOagwo3IM7boXVwF/B4rsZrxNk18yTSQW+vPOdeg/PBApuHLQhnqm4IVGO/3MsQjyOEs+/orhHC9su+zNWQT8Conja9gsaNjrthe4lwuqw81Rtx7sQwoxeQl3i7sfIkll/d2asvQe7jWiN+AOmN3DkpPTrAr0v8MsE8bI98M8QZe8vKfBCn+7eKFoCe/9qUWYf8KlSb+6ww4PbxY/2wHybmyKxbwLd7JVVgebefLcVkP+U5pmQX4viRmbrGNnKu+R5aXHt2RFxJd5/xa6I/DLuFPMH8gPExczifJr+6zEbvkSp6lc4h5wFXLXyeG+Yz22/MJvL0yqGl/nieLGbFeoL+d3W5qgPaN7h2Qic7wE8kcSXDBe8PIvd0FwPX/lPaj/XhHbGeN+TBz69wJA359xiJurHPgZtHbHDDfFH+12DgEQd0w7A/kPYJsID8vZhF+6h0tO7oX15618g168212ck4X2LHFMNUcm2T+SLqMspTYrls4OcD5yZ7x2I9VnPp71RYX3duljkizhkWnpYFPLFz4gnEedvGty2HeI/LKsHRHejvTr1uIA/c6mH5xzbEPzoWU8AnVomcw/Ld7IZOyPcLGJWZhvMwpT4sHSCcaQ8yOo3tmqquYJBnbq6acBdx1sHDGvkwv3+/uf2pFp1H9iIVMcBtn6g5I04tqFlzFnhBcWI7yidkl/h7eYE9aJ9lXT8FvReBgGd/wR68WrrBEPNJ7MxmsAc7lmfNxPYyJ+spdZfcd/0Ek+jv6PfauKglAFc038luxnl67/dX3Cb2V1qwk0D9CP+t1exPufxMi9SP2F/EeG5p5nOrksYRfiRe5Hc+r35V94+zRm8z+0rWidqA0AV1cxQvZozl5unkU6lffAUMEec+GW4fR7hFp6nvcsSpox5VbqA3CK5MbRHGedSHZ9kBf6buUIR5sXvNN+BXfjc1Y673+eZ1cn4z7d5zFv9Cv9dJbI31T8J9r7T86EO8ydu6H+L3h/VCO1D+M3fLwhuWauS+zKu7O98g/bD29vmZwM2MI44hfyBnmdUTK+D1ejsH3iO9UX0+sx38fg+N//zC+vwa481mkN/pJ5AgjuN6q88fBr8f19M/UAZxnqjILDvIkxvyF/qF80tFjigYAG+/6xCK3jtHb2v1XOBn7YvHtuA8/+Ld7ImQV2ZqMYDXxbW9XmMJZ0ZHzxPBfoCYmMxxIB9vMOsnlo+cEq6lS/TJuZyu30v/PWfmxTJnmnDPt74JbxFnFYtM3Uy4L8/xwM+leP9RXdWXRPbPcrW31XJ4H66TO0b2HW7vs+9lmFN/Dh+NJ/tqVPbUSsxF9++BPENGkCXnif173mV3t0D8ZUx/sDPmjMQ5Y+A/Hiqexv6QqYuUmiaR9Vjuyn6ihv2iT6XXQH7ynBtTHiBOG3bfm0g4Vzbn0lks7xa/L2QC6ANFv5YhzuzRvdNPOGfDD++dWN677JwMxE9/N5kvxffX/u4tQu5P16hL6ouh/WG9Uctl8NP2nhq7DnNJEeNc4Da7vKYgTmWbXCsk85vjVbfSBcUHqU/is3YQThvkXrbGnLa7d7CHcI1pyUtURvgzqRLz/9b/+uW5I3iMC5/zZrJH8srVfM4OWvOPc/94aZ+BdbElgjMBzTduqkCID/i9f29f0Y/1AU3rfRxYL2yfqd8RTw2LL79tRuzo1vic40ifSS0dnrCEcPbUYN8mpP94ujANwYQzq85c+ojiBdzjW5sG4TqzS/bUMxQXCFh1eRz8f1q+3O8h2v9//HnbCvLCmTbzuYi7PEwXgziLxYm28/h8d809Pxl4u3DQesSZBFdpPrf2sPbBPOO7gSiMy86vwc74PU7jTHgJv1/MLIGNOHdhVFIb8PeHPX0Rp5OuT5ivSq5j5cbfQPsbe+2RJkng1tMeFHShfePCh2o94DEr9RMRZwr8/ppPIHrmLIPBeygfg9n4o+wW4dzho+9CcJ5G88yymyBvft3oGeLs90mnLWA8g1hRD9G643D3c1cSzpQqlK5AnJ6486AO4bSjx9MgvE7zD5mO6yV2/eof7qbY3r++V98E/NIuBnPmYf79nrcB8DSOjBbirCjlUatAPz8zj1FDeR3s2H0JR4Ev2LehEnFayfOCP/BDqxvlUH4I8+OawHyi13FV/G93oPxGZvW2CaDvsX1XSo8Sx3bKOmcPwjlHw08OYPlHyu/2kf2WO160uhDvw1UFWvMJp80rVO4hzhQlPYqE/blzfG8qjl+cLdU9Q+wE+tlLySKU70QrPH29BXjZi6wCzO2fVBwgnDE7byaH6g5o3vMrn5bCOWh+pkAB10+dluYBP3rsLw/5mdlemVukzMm1+sQWO5Q/z7qyaZo0vPf6h4aPupDfbHcQpQz8U7N3F+KMdnv0XOA9Gxr8Eafs/9QUgJ2iuEcpENe7qYR6nIfzMvxy0yHEueltsyAPijvufvdKLK9+q+A0+LetTs+9jOuzmtfsL/xGeOLspGTMI5/tSiCc+y57wiHM/4/+Mfc+5FSAfiD/Sz3xL/JL3IrYdRf4uevZzYizn9O3XwPXXX2sD3Fq7sH7sbAPnCiOfYbyBJi5V7d/IJxJDVRpxfkDVwKzeMCjT7x8gflHA63rPcYU+2JQsjPOzx9MkZr025jiflnt5o25xdO+qF/EbnIXtgtBvCTreflLfbIP9AbcuoHiR9q0zoIcwnkp+vsqEI8pr2/MAh5VmZ6G403MR80JbyEfePLJ9mrshwnbkwn5+jJmnTM/Ie5UafAW8vkLtq3czEM8bmz7gzZjip4748ct7Occ83TYG3hNZ8g5zN0OyQm0k987IVfpIualLi5fyDiwpr8+K479zH8GHL9BPCN8dF8X1utGjd4HnL2/Wl4Ay1e52Sr+BvvLfGcZ3q9CqCduhDNruMIFmGd1+cqAvIbu73fYn7mttiuWIvtJhNY4GzV0/0PnpKyJvcc8uSC2AnHGJ9jjGOSFVirURiLO7sv6cRf8OM6XK+TwPAxPXPEOeGlicusgOh+nKJblAL/zXnYdkmf0WpqlIW94sut9TVSvwXxUiDIEfvdX/H7MJYsc5Alnko/eH1HfUR58mwZ/cY2BYjWup7ga7pBPOCt+jLYw/r29vunXIU6wf2O4NP5dY8JlIyHPyfyO/RgZtC8t4hUehjoph548CcQZddOIYyA/blvRNMTZlWs3mBPOiBst+4U4J1djrB3cR26HTSPmbMrVBPjNwx8qEaeapoqlk/XF9I7vVMR875HOfWQdMefp7+qYH1KYchfkKz9ZrcHPuVJYZQ/kHQXGFthhfTh43dNEYs/SDw1+KyHO1L2U+QB28UWl14GI06WxV7lkH+A6v5FKwvkh16iodMLp+hD3ZpxP8pX2KId9ZozCHszpRTdaZpLzkeupnvEIn+OHp6SZwLn5bor/K8zjH4UvBL9Z+zXLAvER+2p2eTVfb1yQ8HmkPvmog8+1ZraP4LQJP8+BKfJpRNxfS2AK+F15mb1W79E+IDQvnQvcYlXrNOQ/p2os68Jgfsf4nal6g7hwTdpdOBevmtSWdiD+LejZFeBqLFGPTjT/B+z/xgDf+WCHBOLsv5X5j8Gen63P0UR+D7bne9cnhDMJ941cMS+etPYOyG/4+U4D+1UKtoaMnU32yR/WInooj4J3/e5xbeD2bxZU4fodn67H9oRzZ405JIvzLqiG5V8zIV7jVvArDvuHR0kvvAHXHxf0n0acazBmfCrEfYS7TE6h31snfZYfH2xe+FoQx/t8Pjus5ccN52XLo7gPc6DWbhvwyNOb2hCn1HzW2IHf/MbNl+twft3ziWxDiPuqeanYo3w/qqvXazf4xaxa3uogfzLt1az9GfLo3nhfi0T1xdzOMfk2EFcSM5J6hPnl+kAzIk/vyjYvwnkFpVdeVMI8j55/OEMP2Snrp/+aQ/Qt344Hw0cQp5O9JAMIZ5Q3d4+Q91nfn6RIxt/pROccpIewp23RdiT7J2Nm+TwC1+X9KHipRTh3zMtJ/Pyyf46egc0bYNyv/j64HvtzJM/+9AK+b7Ivrs+ltOO8PYBrbqt2R3zHudWD4xdT7Oaak9tx3dk569eOwOcvpG9gvjk+oo9w3jgLx9uYz04KV4H3+KcvIhTnEy77vM+RcEaToxeAOJM3v8wI+MfSSFfEubrXm2ZBfO2s5H5lFH+h7tBZUsB9p6buQvEX+tiKzhnA70+sVcXyBR923LsLfsvaK1szEY+Z9zeGX6fslBmQjuMsLuP9IU7Jiz2x9x6az8616+3gfdz2ORaE6/UcZsdFEU7Levn743H4Yt4bBPl+8R4303C9non24agJoJ8rnvgiitbdtdNJscAPGb3mYf5oYs4r4MGbs9swF3ntEQ36hNn6VuU6NA6LFs/nc5lnhxZhntTC8gI+P7SxAXFGIG5DP/hJrDhFYbg/Q3OpkAPhdJ7QhTacb7AsijICP8mKAoEW7Fd32NwUMmRMcQ4k2Cjj/IpJMZUzgH8uCDTHfEm6TzDhrDc3gxYhzlhWlcF5TLt4eNXi/L0UlUEpyAvyuyHSjDgTWrYL5LmtGROycR7gfuHXLhDvK726ci5a11R9yElT4GO67rzE61rulyqfU+8n1o/IIxqwNYD4VLXR32Tc54E+bTB8nlz3vT+/rhPvhxXNAfHG0F9ilTS2U6iYDEl+3Jd+ETciL93l5ZAPv1+BXuJMzN3qk7fz5T3aVBCfuTlnSUceRb9Ku9SA/TBDOQXGnXkUR/X+0zLMo9vcyvj1yB8F+hFn0l+cTYD3lzim0xnbj9xo8VzCmbTskk3Y3uzxP/AI+KH1O5ywXbmO8/iZLHlf0fNPMDi/KHdyfhHk3W38efg75pcb30aAvPk542jMnRYqFhN7ii6/sXKEnUX5z7kMfmqOXWIw5vEJS7LB/hItlQpHnNkynfUN/GObKd9etE9yhxdkZIIf5I31JntsDza2DIN/hGt+z7QZyfMc531ZCHp55rUnQ3eR36b876tZwG0esKfcx+f73FfGwMU+zb2L/EK03/EZymDPBzitDkLrixvkpD0B+Az/5e8Rpy84dw7Bc37R9luK+TPJqDeQl2h67igeT+b2GHd/iGdPDtjVjjg308U0CuS3sO4dQ5yzpmmWDPhflJrH+HQiP8/luO/8PiGC88et+on82xbeXH48JalJ8yyKp3DXmJ8dA/41m4tSqhVoHNgHHQyAZ19VT/yAxmHMtZeywAPvTduB8xaqhRwugL/+Rpzk86+I55XMnAs8PG+HKuZLtu4+AnUy+1Oz0z+jvzt2fZ8f2aeYN51nx2M7qEzqmgvwtPvxLVh//vzHUxf2tQOvGBEkTy+foeAnQeanfm+EB66XfJVf4wB84ynFVTj+0iNwYzn4TZ4t+uiJ+aa2LoaMF9vyz6LF2L6bPG2LH+HM75LvIpj/Vqg1I++DvSYmaAHirKljVCJh3KzCZ38uQe/FNO/rSeBvlj5MR/EFuvNhy2HgFgaFsqUj8q459/7L++W1to6I48ho/hfvYXo+j+CVUf9d2zA8lCccbF8ZBnblRiFLQVxn9OjkUQvCudeLb5fg/XwWr/cd2JVRoU6ViPOejU0+DNesQFlFFMdkAiLuPADOvfXmL/J/sh13P7oCfOb9Vd8R5wkIsW6QfY2ZamGzHr/fb6dNM4AHfDnrijjvTMVy4FxLM2fM6fOxp3VBD5mWtPjgJLROb/sJrQR9Zn1j+V9R9Ls4k/zFgQcsui2H5Clm9MN6qKemNwVq+eHxD/3by6+DZZl+GKGPGZ9aA/XJTErwYyTPns9rKyT6ORO5VPgjigOyzYSknwE3K16QhuYbJ6/bbrIG4Q+cwgNx3nhumqERxJt/TrXPwPGFmGXx7rBvvq7eKToLjcPiDVecgAcfXpSE5ZffvywN8Yv48eWByO6gja6J9I0nfM7raYcQ5xbZDO0C+f1Tx3zFdkq6cZMrnLP1Zz7ZTET3t9o6dSJwq5PvJ2NeOa7NE/q/iERIyGAukvblAvhxgu6vXY/jvHO+irgCFxmWc8HcSWAgAurDl3voL0R+b9YGbVs1bfD/z9rzYDbaNy5HDLyA/ioKhkuvIU5X5Vf9JJzza3RQH+KsAqnUU8CnLhv7BHHuaRm9VYSzZohaCqH6LJbUTjaXcDqtU2cS4pSr+Il9oOcYj89tw/Vl84v+6MF83a3or4/zNoc0LQJBvrkmOQjraZ8qPjztzaNYzhUX87Hf6WvH7mHCeXHpeSWYW/ru7gV/eKdEeznmFs/b34H+mV1/cwIe/y3GU5yAWweWf8H5Xeqa7b7AB4c1f2D+4UJlF9S10amVP3Fe0JoTzqq/yTleF6D7G/MDdYZShPNu6UWM4BQ1IDrI349CXw2M2K+yt/Xxr+ujRtY70EH/7Xf6d37841zJ0AO7oX5GV3LHMZRnyCl6dP4A8Jv5TYGIM2IacfuB78iSYTDftWPvZcgvylOxVMD29aPagWdgVzazv8/B/TGma4UXgvz41I8q

If you just want to decode the data, open the file with ParaView and then save it again by setting the Data Mode to Ascii instead of Appended. See below

To perform calculations on the data you may use the Calculator Filter or even the Python Calculator.

Thanks, but I found another issue, I calculated one result, like result1, then I calculated another one (result2), the new one will cover my result1, making the previous one become result1(?), then it disappears. I don’t want to create many calculators in the list, I want them all inside one scalar.
image

Use a more recent version of ParaView, like 5.10

Hello, I just download the ParaView a week ago, and it is 5.10.

Thanks, but I found another issue, I calculated one result, like result1, then I calculated another one (result2), the new one will cover my result1, making the previous one become result1(?), then it disappears. I don’t want to create many calculators in the list, I want them all inside one scalar.

The problem here is that you are overwriting the previous calculation. Each Calculator instance produces a new result<x>. To (re)use result0 you need a new Calculator instance. To avoid having multiple result<x> combine the calculations into one formula/expression.

1 Like