How to discard NaN value datasets using Python shell?

I tried to interpolate my dataset but after interpolating it, some dataset resulted in NaN values.
In order to discard the dataset, I need to make a ’ if ’ conditional part to save only real numbers.
From the resulted spread sheet, the name of the column having NaN values is ‘pressure’.
I thought I can write the code like this below, but it did not work at all…

# save data
if np.isnan(interp_model['pressure']) == False:
            SaveData(os.path.join(tar_dir_new, filename), proxy=interp_model, PointDataArrays=data_array)

My Python script for interpolation looks like this.

# Loop through different reduction rates
for rate in reduction_rates:
    print(f"reduction rate = {rate:.1f}")
    # Define target directory for each reduction rate
    tar_dir_new = os.path.join(tar_dir, f"reduction_rate={rate:.1f}")
    if not os.path.exists(tar_dir_new):

    # Load target grid
    # Assumes reduced mesh is saved in ".vtk" format and that is the only ".vtk" file in the directory
    reduced_path = os.path.join(tar_dir_new, [n for n in os.listdir(tar_dir_new) if ".vtk" in n][0])
    reduced_model = LegacyVTKReader(
    UpdatePipeline(time=0.0, proxy=reduced_model)

    # Loop through src directory
    for root, dirs, files in os.walk(src_dir):
        # Finds files ending with ".vtp" and assume they are original data
        file_to_look = [n for n in files if ".vtp" in n]
        for n, filename in enumerate(file_to_look):
            print(f"\t{n + 1} / {len(file_to_look)}: ")
            src_path = os.path.join(root, filename)

            # Read source file
            src_model = XMLPolyDataReader(
            src_model.PointArrayStatus = data_array
            src_model.TimeArray = 'None'
            UpdatePipeline(time=0.0, proxy=src_model)

            # create a new 'Point Dataset Interpolator'
            interp_model = PointDatasetInterpolator(
            interp_model.Kernel = 'VoronoiKernel'
            interp_model.Locator = 'Static Point Locator'
            UpdatePipeline(time=0.0, proxy=interp_model)

            # save data
            SaveData(os.path.join(tar_dir_new, filename), proxy=interp_model, PointDataArrays=data_array)


How can I skip saving interpolated dataset that has NaN values?